Below you can find the full step by step solution for you problem. We hope it will be very helpful for you and it will help you to understand the solving process.
(pi*(1-e^(-0.2*x)))'The calculation above is a derivative of the function f (x)
(pi)'*(1-e^(-0.2*x))+pi*(1-e^(-0.2*x))'
0*(1-e^(-0.2*x))+pi*(1-e^(-0.2*x))'
0*(1-e^(-0.2*x))+pi*((-e^(-0.2*x))'+(1)')
0*(1-e^(-0.2*x))+pi*((1)'-e^(-0.2*x)*((-0.2*x)'*ln(e)+(-0.2*x*(e)')/e))
0*(1-e^(-0.2*x))+pi*((1)'-e^(-0.2*x)*((-0.2*x)'*ln(e)+(-0.2*x*0)/e))
0*(1-e^(-0.2*x))+pi*((1)'-e^(-0.2*x)*(((-0.2)'*x-0.2*(x)')*ln(e)+(-0.2*x*0)/e))
0*(1-e^(-0.2*x))+pi*((1)'-e^(-0.2*x)*((0*x-0.2*(x)')*ln(e)+(-0.2*x*0)/e))
0*(1-e^(-0.2*x))+pi*((1)'-e^(-0.2*x)*((0*x-0.2*1)*ln(e)+(-0.2*x*0)/e))
0*(1-e^(-0.2*x))+pi*((1)'-e^(-0.2*x)*((-0.2*x*0)/e-0.2*ln(e)))
0*(1-e^(-0.2*x))+pi*((1)'-e^((-0.2)'*x-0.2*(x)'))
0*(1-e^(-0.2*x))+pi*((1)'-e^(0*x-0.2*(x)'))
0*(1-e^(-0.2*x))+pi*((1)'-e^(0*x-0.2*1))
0*(1-e^(-0.2*x))+pi*((1)'-0^(-0.2*x))
0*(1-e^(-0.2*x))+pi*(0-0.2*e^(-0.2*x))
0*(1-e^(-0.2*x))+pi*-0.2*e^(-0.2*x)
-0.2*pi*e^(-0.2*x)
| Derivative of (X^2)/(44) | | Derivative of 6x^8 | | Derivative of (3x^(7/8)-3y^(1/2))(7x^(7/8)-3y^(1/2)) | | Derivative of (X^(1/3))*(x-4) | | Derivative of x/tan(x) | | Derivative of 1/(x)^2 | | Derivative of ln(9x)^8 | | Derivative of (e^-2x)*cos(3.14x) | | Derivative of x^2-66x | | Derivative of 5sin(x)tan(x) | | Derivative of 5sin(3x-6) | | Derivative of 64 | | Derivative of e^0.1t | | Derivative of 377*sin(2*3.1415*400*x) | | Derivative of ln(x^2-8) | | Derivative of Pi^(1/2) | | Derivative of 5cos(x^1/2) | | Derivative of 200/3x | | Derivative of 200/3 | | Derivative of ((x^-3)-7)((3x^5)-(8^-7)-7) | | Derivative of 4*e^(3x) | | Derivative of x^(-6)*sin(x) | | Derivative of (tan(x))^4 | | Derivative of ((x^3)-1)/2ln(x) | | Derivative of 9e^(-1/2x) | | Derivative of 9e^(-1/2) | | Derivative of X5 | | Derivative of sin((pi*x)^9) | | Derivative of (y-x)/(y^2) | | Derivative of (y-x)(y^-2) | | Derivative of cos(x^0) | | Derivative of 5e^(1-x^2) |